DESIGN MANUAL FOR
FORTRESS CARBON-KEVLAR STRAP
FRP STRENGTHENING
COMPOSITE SYSTEM FOR MASONRY
STRUCTURES

ESR No. 3815
ICC-ES AC 125

Document Number: 2001066096
Document Control:

<table>
<thead>
<tr>
<th>Superseded Manual</th>
<th>New document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for Revision</td>
<td>n/a</td>
</tr>
<tr>
<td>Effective Date</td>
<td>August 28 2017</td>
</tr>
</tbody>
</table>

Document Approval Signature:

I indicate that I have reviewed this Design Manual and agree with the technical contents it presents, and find it meets all applicable requirements and policies. I approve for its release to the customer.

Name:
Signature:
Date: August 28 2017

Name:
Signature:
Date: August 28 2017
TABLE OF CONTENTS

1 INTRODUCTION 4
2 FORTRESS CARBON GRID STRAP 5
3 INSTALLATION of FORTRESS CARBON GRID STRAP 6
4 WALL FLEXURE DESIGN with FORTRESS CARBON GRID STRAP 8
5 DESIGN TOOLS 11
6 SPECIAL INSPECTION REQUIREMENTS 12
7 REFERENCES 13
A APPENDIX A 14
1. INTRODUCTION

1.1. PURPOSE

The objective of this design manual is to satisfy the design requirements for the ESR (evaluation service report) No. 3815 in recognition of Acceptance Criteria AC 125 International Code Council Evaluation Service (ICC-ES) Acceptance Criteria for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer Composite Systems (AC 125), Section 7.3; for the use of the Fortress Carbon Grid Strap FRP composite system for strengthening of masonry walls in flexural (out-of-plane) applications.

This document contains the experimental and design, material specifications, design equations, installation instructions, reference to design tools for the licensed professional, and a design example for reference purposes.

1.2. ESR No. 3815 HOLDER INFORMATION

FORTRESS STABILIZATION SYSTEMS
184 W 64TH STREET
HOLLAND, MI 49423
(800) 207-6204
www.fortressstabilization.com
2. FORTRESS CARBON GRID STRAP

2.1. FRP COMPOSITE SYSTEM DESCRIPTION

The Fortress Carbon Grid Strap FRP is a high-strength grid composed of three or more customizable uni-directional carbon fiber tows precured in tension with an epoxy matrix bonded together with a transverse fiber producing an open grid. It is supplied in varying widths from 0.5 in. (10mm) to 50 in. (1250mm). Fortress Carbon Grid Strap FRP has a storage life of 10 years.

The Fortress Carbon Grid Strap is applied over the substrate continuously in a single layer, and adhered to the substrate and environmentally protected with the Fortress 4000 adhesive epoxy, a two-component ambient cured epoxy resin system. The Fortress 4000 adhesive is packaged in a double-cylinder epoxy cartridge with a static mixing tube available in 300ml x 150ml, 600ml x 300ml tube sets; as well as in 3-gallon (11 L) and 165-gallon (624 L) kits. Mixing ratio is 2:1 by volume (100:35 by weight) for components A and B, respectively. Fortress 4000 has storage life of two years.

2.2. FRP EXPERIMENTAL PROPERTIES

The following reported experimental properties of the Fortress Carbon Grid Strap FRP system are absolute values based on experimental test specimens. These values do not include safety factors; refer to Section 4 of this document for design properties. Safety factors must be applied to experimental values in accordance with design guides and licensed professional engineering value, as applicable.

<table>
<thead>
<tr>
<th>Test Standard Reference Number</th>
<th>Average Property</th>
<th>Experimental Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D3039 / D7565</td>
<td>Ultimate Tensile Strength</td>
<td>1,815 MPa 263.2 ksi</td>
</tr>
<tr>
<td></td>
<td>Tensile Modulus</td>
<td>15.89 Msi 109.5 GPa</td>
</tr>
<tr>
<td></td>
<td>Ultimate Strain</td>
<td>0.0166 mm/mm 0.0166 in./in.</td>
</tr>
<tr>
<td></td>
<td>Tensile strength per tow</td>
<td>6.32 kN/tow 1,421 lbs/tow</td>
</tr>
<tr>
<td></td>
<td>Single tow area</td>
<td>3.242 mm² 0.0050 in.²</td>
</tr>
<tr>
<td></td>
<td>Ply/grid thickness</td>
<td>Refer below*</td>
</tr>
<tr>
<td>ASTM D792</td>
<td>Glass Transition Temperature (DMA)</td>
<td>60.9 °C 141.6 °F</td>
</tr>
<tr>
<td></td>
<td>Coef. Of Thermal Expansion:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> Parallel to fiber</td>
<td>11.1 μm/m/°C 6.2 μin./in./°F</td>
</tr>
<tr>
<td></td>
<td>> Perpendicular to fiber</td>
<td>38.5 μm/m/°C 21.4 μin./in./°F</td>
</tr>
<tr>
<td>ASTM E1640</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM E831</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*To compute the nominal ply/laminate/grip thickness, \(t_f \):

\[
t_f = \frac{(N_{tow} \times A_{tow})}{W_{grid}}
\]
Where:
\[W_{\text{grid}} \] - width of Fortress Carbon Grid Strap
\[A_{\text{tow}} \] - Single tow area
\[N_{\text{tow}} \] - number of tows in the width of the Fortress Carbon Grid Strap to be installed
3. INSTALLATION of FORTRESS CARBON GRID STRAP

3.1. INSTALLATION INSTRUCTIONS

Installation of the Fortress Carbon Grid Strap FRP composite system on masonry wall structures must follow the instructions as stated in the most recent version of document ‘Installation sheet-6596-0200’. Fortress Stabilization Systems also provides installation training and demonstrations. Note that no spacing between straps longer than 48 in. (4 ft.) is allowable.

3.2. SUBSTRATE PREPARATION

Where the performance of the FRP composite material depends on bond, such as flexural strengthening of masonry walls, the bond strength of the Fortress Carbon Grid Strap FRP system to a properly prepared surface must equal to or exceed the tensile strength of the masonry substrate. Testing in accordance with ASTM D7234 or ASTM D7522 may be used to estimate the bond strength of bond-critical installations. The test must indicate failure in the host substrate. Sufficient bond area must be used to prevent bond failure.

An improperly prepared surface can result in debonding or delamination of the FRP system before achieving the design load transfer. General guidelines presented here are applicable to the installation of the FRP system. Additionally refer to best practices as specified in the International Concrete Repair Institute (ICRI) guide No. 330.2-2016.

Substrate repair
Problems associated with the condition of the original substrate can compromise the integrity of the FRP system and must be addressed before surface preparation begins. The licensed professional should be consulted to verify the compatibility of materials used for repairing the substrate as necessary.

Surface preparation
Surface preparation requirements shall be specified as needed and might involve, sandblasting, roughening, grinding, or hydro-jetting to abrade the surface, as well as grinding excess mortar in the joints in masonry. All paint and other coatings must be removed from the substrate surface. The **Fortress 4000** adhesive epoxy can be used to fill the mortar joints and provide continuity as well as reducing stress concentrations. Particular care should be taken to ensure that the surface is clean from dust and laitance, and to avoid unintentional damage to the substrate by using excessive force.
Installation Kit
All necessary tools are provided in the Fortress Carbon Grid Strap FRP composite system Kit for its installation, including:

- Fortress Carbon Grid Strap
- Mylar overlay
- Fortress 4000 Epoxy 150/300 Cartridge with mixer
- Trowels
- Gloves
- Installation sheet

3.3. ENVIRONMENTAL CONSIDERATIONS
Room temperature at the time of installation shall be 13 °C to 38°C (55 °F to 100 °F), while the surface temperature shall be 13°C to 38°C (55 °F to 100 °F). The Fortress Carbon Grid Strap FRP composite system can be applied over a moist surface condition (without the presence of water droplets) where the license engineer and/or manufacture can determine the appropriate level of moisture presence. Auxiliary heat sources can be used to raise the ambient and room and/or surface temperature during installation as well as reducing moisture as applicable. Heat sources should be clean and not contaminate the surface or the FRP system. *No additional conditions.*

3.4. PRODUCT IDENTIFICATION
All Fortress Carbon Grid Strap FRP composite system products are labeled in accordance with the approved quality control documentation including the manufactures name (Fortress Stabilization Systems) and address, product name, and evaluation report number (ESR-3815). Prior to installation, verify that the Fortress Carbon Grid Strap FRP is legitimate.
4. WALL FLEXURE DESIGN with FORTRESS CARBON GRID STRAP

4.1. GENERAL DESIGN CONSIDERATIONS

The design for the strengthening in flexure or out-of-plane of masonry walls using the Fortress Carbon Grid Strap FRP composite system is based on strength design in accordance with Chapter 19 and 21 of the IBC and UBC. The owner and registered design professional are responsible for determining, through analysis, the strengths and demands of the structural elements to be strengthened by the Fortress Carbon Grid Strap FRP system, subject to the approval of the code official.

Structural design provisions for the Fortress Carbon Grid Strap FRP system are based on test results and principles of structural analysis as prescribed in IBC Section 1604.4, in addition to extensive research literature and design guides like ACI 440.2R. The basis of design includes strain compatibility, load equilibrium and limit states. All designs must follow procedures as detailed in the IBC and UBC, as applicable described in this section.

4.2. FRP DESIGN PROPERTIES

<table>
<thead>
<tr>
<th>Test Standard Reference Number</th>
<th>Design Property</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D3039 / D7565</td>
<td>Guaranteed Tensile Strength(^1)</td>
<td>1,498 MPa (217.3 ksi)</td>
</tr>
<tr>
<td></td>
<td>Tensile Modulus</td>
<td>15.89 Msi (109.5 GPa)</td>
</tr>
<tr>
<td></td>
<td>Guaranteed Ultimate Strain(^1)</td>
<td>0.0129 mm/mm (0.0129 in./in.)</td>
</tr>
<tr>
<td></td>
<td>Tensile strength per tow</td>
<td>5.22 kN/tow (1,173 lbs/tow)</td>
</tr>
<tr>
<td></td>
<td>Nominal single tow area</td>
<td>3.481 mm(^2) (0.0054 in.(^2))</td>
</tr>
<tr>
<td></td>
<td>Nominal ply/grid thickness</td>
<td>Refer below*</td>
</tr>
</tbody>
</table>

\(^{1}\)Experimental value minus three times the standard deviation.

*To compute the nominal ply/laminate/grip thickness, \(t_r\):

\[
t_r = \frac{(N_{tow} \times A_{tow})}{W_{\text{grid}}}
\]

Where:

- \(W_{\text{grid}}\) – width of Fortress Carbon Grid Strap
- \(A_{tow}\) – nominal single tow area (equal to 3.481 mm\(^2\) [0.0054 in.\(^2\)])
- \(N_{tow}\) – number of tows in width of the Fortress Carbon Grid Strap to be installed
4.3. DESIGN NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_f</td>
<td>Area of FRP reinforcement per unit length, cm2/m (in.2/ft)</td>
</tr>
<tr>
<td>A_n</td>
<td>Section area of masonry block, cm2/m (in.2/ft)</td>
</tr>
<tr>
<td>C_E</td>
<td>Environmental-reduction factor</td>
</tr>
<tr>
<td>E_f</td>
<td>FRP tensile modulus of elasticity, MPa (ksi)</td>
</tr>
<tr>
<td>E_m</td>
<td>Elastic modulus of masonry block, MPa (ksi)</td>
</tr>
<tr>
<td>f_{te}</td>
<td>Effective FRP tensile stress, MPa (psi)</td>
</tr>
<tr>
<td>f_{fu}</td>
<td>Guaranteed FRP tensile strength, MPa (psi)</td>
</tr>
<tr>
<td>f_u</td>
<td>Design tensile strength, MPa (psi)</td>
</tr>
<tr>
<td>f'_{m}</td>
<td>Nominal compressive strength of masonry block, MPa (psi)</td>
</tr>
<tr>
<td>f_r</td>
<td>Nominal tensile strength of masonry block, MPa (psi)</td>
</tr>
<tr>
<td>h_{eff}</td>
<td>Height to resultant of lateral forces, mm (in.)</td>
</tr>
<tr>
<td>H_w</td>
<td>Height of the wall, mm (in.)</td>
</tr>
<tr>
<td>l_{df}</td>
<td>Development length of FRP system, mm (in.)</td>
</tr>
<tr>
<td>L_w</td>
<td>Length of the wall, mm (in.)</td>
</tr>
<tr>
<td>M_{cr}</td>
<td>Cracking moment, kN-m/m (lbf-ft/ft)</td>
</tr>
<tr>
<td>M_n</td>
<td>Nominal flexural strength, kN-m/m (lbf-ft/ft)</td>
</tr>
<tr>
<td>n</td>
<td>Number of FRP plies (always =1 for Fortress Carbon Grid Strap)</td>
</tr>
<tr>
<td>p_{ffu}</td>
<td>Guaranteed FRP load per unit width, kN/mm (lb/in.)</td>
</tr>
<tr>
<td>Q_u</td>
<td>Applied factored axial load, kN (kip)</td>
</tr>
<tr>
<td>S_f</td>
<td>Spacing of FRP strip, mm (in.)</td>
</tr>
<tr>
<td>S_o</td>
<td>Static moment of area, cm3/m (in.3/ft)</td>
</tr>
<tr>
<td>t_f</td>
<td>FRP nominal laminate/grid thickness, mm (in.)</td>
</tr>
<tr>
<td>t_{shell}</td>
<td>Thickness of the masonry block shells, mm (in.)</td>
</tr>
<tr>
<td>t_w</td>
<td>Thickness of the wall / masonry block, mm (in.)</td>
</tr>
<tr>
<td>V_n</td>
<td>Out-of-plane shear strength, kN (kip)</td>
</tr>
<tr>
<td>V_u</td>
<td>Factored shear force, kN (kip)</td>
</tr>
<tr>
<td>W_f</td>
<td>Width of FRP strip, mm (in.)</td>
</tr>
<tr>
<td>β_1</td>
<td>Ratio of depth of equivalent rectangular stress block to depth of the neutral axis</td>
</tr>
<tr>
<td>ϕ</td>
<td>Strength reduction factor</td>
</tr>
<tr>
<td>k_m</td>
<td>Bond-reduction factor</td>
</tr>
<tr>
<td>ε_{te}</td>
<td>Effective FRP tensile strain, mm/mm (in./in.)</td>
</tr>
<tr>
<td>ε_{fu}</td>
<td>Guaranteed FRP ultimate tensile strain, mm/mm (in./in.)</td>
</tr>
<tr>
<td>ε_u</td>
<td>Design tensile strain, mm/mm (in./in.)</td>
</tr>
<tr>
<td>ε_{mu}</td>
<td>Compressive ultimate strain of masonry block, mm/mm (in./in.)</td>
</tr>
<tr>
<td>ε_c</td>
<td>Compression strain in unit base material of the masonry, mm/mm (in./in.)</td>
</tr>
</tbody>
</table>
4.4. DESIGN EQUATIONS

<table>
<thead>
<tr>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{fu}} = C E f_{\text{ffu}})</td>
<td>ACI 440.2R (9-3)</td>
</tr>
<tr>
<td>(\varepsilon_{\text{fu}} = C E \varepsilon_{\text{ffu}})</td>
<td>ACI 440.2R (9-4)</td>
</tr>
<tr>
<td>(\varphi M_n \geq M_{u})</td>
<td>ACI 440.2R (10-1)</td>
</tr>
<tr>
<td>(M_{cr} = f_S)</td>
<td>ACI 530 Section (3.1.8.2)</td>
</tr>
<tr>
<td>(\gamma f_m \beta C_u = n_f A_f f_{fc})</td>
<td>Masonry structure Section (5.5.1)</td>
</tr>
<tr>
<td>(M_n = A_f f_{fc} (t - \frac{\beta C_u}{2}))</td>
<td>Masonry structure Section (5.5.1)</td>
</tr>
<tr>
<td>(M_n = \gamma f_m \beta C_u (t - \frac{\beta C_u}{2}))</td>
<td>Masonry structure Section (5.5.1)</td>
</tr>
<tr>
<td>(\phi V_n = \phi_v \times \text{Min}{3.8 A_n \sqrt{f_m};300 A_n;56 A_n+0.45 N_u}+0.5(\frac{A_c}{S})f_S d)</td>
<td>ACI 530 Sec.3.2.4 (a,b,c)</td>
</tr>
</tbody>
</table>

4.5. DESIGN EXAMPLE

Refer to Appendix A, which contains a general design example for the flexural strengthening of unreinforced masonry wall subject to out-of-plane loads with FRP. This design example provides a reference for the registered design professional, whom is responsible for determining, through analysis, the strengths and demands of the structural elements to be strengthened by the Fortress Carbon Grid Strap FRP system, subject to the approval of the code official.
5. DESIGN TOOLS

5.1. FRPPRO™ MASONRY OUT-OF-PLANE STRENGTHENING

This workbook for flexural strengthening of unreinforced masonry walls for out-of-plane loads with externally applied, FRPPRO™ Masonry Out-of-Plane solves strengthening of in accordance with ACI 440.7R-10 and ACI 530. The following are applicable assumptions and limitations of FRPPRO™:

a) This workbook calculates the out-of-plane loads on restrained masonry walls due to soil pressure.
b) Soil pressure is entered and calculated based on an equivalent fluid pressure.
c) Only concrete masonry unit construction is supported.
d) The worksheet labeled "Flexural Strengthening" is the only sheet with entries and calculations. The other worksheets are for support.
e) This application contains many "comment boxes" that contain explanations, helpful hints, and supporting information. "Comment boxes" are denoted by a small, red triangle in the upper right corner of a cell. Hold the mouse pointer over a cell and the comment box will appear.
f) The program uses the ACI recommended bond reduction coefficient, κ_m (ACI 440.7R-10, eq. 8-8). ACI further recommends limiting the useable force per unit width of exterior bonded FRPs to less than or equal to 1,500 lbs/in (eq. ACI 440.7R-10,8-9). This program allows the FRP force per unit area to exceed the limit in equation 8-9 based on experience with Carbon-Kevlar Strap installations.

5.2. FORTRESS CARBON GRID STRAP WALL SPACING TABLE

These tables provide the recommended center-to-center spacing of Fortress Carbon grid strap FRP composite system bonded to ungrouted, 8-inch nominal hollow or solid masonry and 8-inch concrete basement walls. The following applies to the tables:

a) Spacing dimensions are Strap center-to-center.
b) Walls shall be adequately restrained from out-of-plane movement at both the top and bottom of the wall.
c) For basement applications, the exterior grade shall be flat or sloping down and away from the wall a distance equal or greater to the Unbalanced Fill Height.
d) Variations between Unbalanced Fill Heights and Equivalent Fluid Pressures shown may be interpolated linearly.
e) Walls constructed with concrete masonry units (CMU) shall have a minimum compressive strength of 1,250 psi with Type N mortar or better in good condition.
f) Cast-in-place concrete walls shall have a minimum compressive strength of 2,500 psi.
g) Masonry shall be laid in running bond.
h) Refer to the latest Fortress Installation Guide for other restrictions and use
6. SPECIAL INSPECTION REQUIREMENTS

6.1. INSPECTION BACKGROUND

FRP composite systems and all associated work should be inspected as required by the applicable local codes. In the absence of such requirements, inspection should be conducted by or under the supervision of a licensed professional or qualified inspector. Inspectors should be knowledgeable of and trained in the installation of FRP systems. The qualified inspector should require compliance with design drawings and project specifications. During installation of the FRP system, the scope of the inspection should include, but is not limited to:

a) Date and time of installation
b) Ambient temperature, relative humidity, and general weather observations
c) Surface temperature of substrate
d) Surface preparation methods and resulting profile
e) Qualitative description of surface cleanliness
f) Type of auxiliary heat source, if applicable
g) Reinforcement batch number(s) and approximate location in structure
h) Batch numbers, mixture ratios, mixing times, and qualitative descriptions of the appearance of all mixed matrix and additional materials such as primers, putties, and coatings mixed for the day
i) Conformance with installation procedures
j) Substrate tensile pull-off test results completed or supervised by an licensed professional or owner’s independent testing agency, if required
k) FRP properties from tests of field sample panels or witness panels, if required
l) Location and size of any defects
m) General progress of work

The inspector should provide the licensed professional or owner’s representative with inspection records and witness panels when required. The installation contractor should retain sample mortar cubes or cylinders and maintain a record of the placement of each batch as applicable.

6.2. INSPECTION REQUIREMENTS AND ACCEPTANCE

Special inspection must comply with the applicable requirements in Sections 1704 through 1709 of the IBC or Section 1701 of the UBC. Special inspection during the installation of the FRP system must be in accordance with the ICC-ES Acceptance Criteria for Inspection and Verification of Concrete and Unreinforced Masonry Strengthening Using Fiber-reinforced Polymer (FRP) Composite Systems (AC178).
7. REFERENCES

Li, T., Galati, N., Tumialan, J., Nanni, A. Analysis of Unreinforced Masonry Concrete Walls Strengthen

APPENDIX A

Design example for the flexural strengthening of unreinforced masonry wall subject to out-of-plane loads with FRP:

- **Geometrical properties**

 Height of the wall \(H_w := 18 \text{ ft} \)

 Thickness of the wall \(t_w := 11.63 \text{ in} \)

 Length of the wall \(L_w := 17.67 \text{ ft} \)

 Thickness of the block shells \(t_{bloc} := 1 \text{ in} \)

 If clay bricks or fully grouted concrete blocks are used, then use 0.5 in.

 Height to resultant of lateral forces \(h_{ef} := 16 \text{ ft} \)

 Section area \(A := 38 \text{ ft}^2 \)

 Static moment of area \(S_g := 160 \text{ in}^3 \)

- **Mechanical properties of masonry**

 Nominal compressive strength \(f_{cm} := 1500 \text{ psi} \)

 Compressive ultimate strain \(\varepsilon_{mu} := 0.0025 \)

 Masonry elastic modulus \(E_m := 550 \cdot f_{cm} \)

 Nominal tensile strength \(f_t := 20 \text{ psi} \)

- **Flexural strength without FRP**

 Existing nominal flexural strength \(M_n := 270 \text{ lbf} \cdot \text{ft} / \text{ft} \)

 Phi-factor \(\phi := 0.6 \)

 Existing design flexural strength \(\phi M_n := 160 \text{ lbf} \cdot \text{ft} / \text{ft} \)
• Anticipated conditions

New distributed factored lateral load \[P_{\text{load}} = 20 \text{ psf} \]

Applied factored axial load \[Q_u = 576 \text{ lb/ft} \]

New maximum ultimate bending moment \[M_{u\text{New}} = 620 \text{ lb-ft/ft} \]

Thickness \[t_f = 0.014 \text{ in} \]

Tensile modulus of elasticity \[E_f = 10500 \text{ ksi} \]

Ultimate tensile strength \[f_{fyu} = 220 \text{ ksi} \]

Ultimate tensile strain \[\varepsilon_{fyu} = 0.021 \]

Environmental-reduction factor \[C_z = 0.65 \]

Bond-reduction factor \[\kappa_m = 0.45 \]

Strength-reduction factor \[\phi_{\text{flyu}} = 0.6 \]

Number of FRP plies \[n_f = 1 \]

Width of FRP strip \[w_f = 4 \text{ in} \]

Spacing of FRP strip \[s_f = 36 \text{ in} \]

\[
\text{Check Spacing := } \begin{cases} \text{OK} & \text{if } s_f < 3 \cdot t_f + w_f \\ \text{Not Good} & \text{else} \end{cases}
\]
Check Spacing = “OK”

Area of FRP reinforcement per unit length

\[A_f = \eta_f \cdot f_r \cdot \frac{w_f}{s_f} = \frac{m^2}{ft} \]

- **Step 1 - Calculate the FRP design tensile strain and strength**

 Design tensile strain
 \[\varepsilon_{fr} = C_E \cdot \varepsilon_{fr} = 0.01365 \]

 Design tensile strength
 \[f_{fr} = C_E \cdot f_{fr} = kst \]

- **Step 2 - Calculate the new design flexural strength**

 Assume failure mode
 \[FailureMode = “FRP debonding” \]

 Select FailureMode equal to “FRP debonding” or “Masonry crushing”

 The effective tensile strain and stress in the FRCM reinforcement for flexure-controlled failure can be calculated.

 Effective FRP tensile strain
 \[\varepsilon_{fe} = mn \left(\kappa_m \cdot \varepsilon_{fr}, \varepsilon_{fr} \right) = 0.00945 \]

 Effective FRP tensile stress
 \[f_{fe} = mn \left(\kappa_m \cdot f_{fr}, f_{fr} \right) = kst \]

 The following stress block factors can be assumed:

 \[\gamma := \begin{cases} 0.7 & \text{if } FailureMode = “FRP debonding” \\ 0.8 & \text{if } FailureMode = “Masonry crushing” \end{cases} \]

 \[\beta_1 := \begin{cases} 0.7 & \text{if } FailureMode = “FRP debonding” \\ 0.8 & \text{if } FailureMode = “Masonry crushing” \end{cases} \]

 Compatibility:

 \[\varepsilon_f(\gamma) := \begin{cases} \varepsilon_{fe} & \text{if } FailureMode = “FRP debonding” \\ \frac{\left(t_{vu} - \chi \right)}{\kappa_m} \cdot \varepsilon_{mu} & \text{if } FailureMode = “Masonry crushing” \end{cases} \]
Equation of equilibrium:

\[f(x) = Q_x + A_f \cdot E_f \cdot \varepsilon_f(x) - \gamma \cdot f_m \cdot \beta_1 \cdot x \]

\[\varepsilon_u := \text{root} \left(f(x), x, 0, t_w \right) \]

The neutral axis depth is:

\[\varepsilon_u = \gamma \text{ in} \]

The new nominal flexural strength is:

\[M_{\text{New}} = \gamma \cdot f_m \cdot \beta_1 \cdot \varepsilon_u \left(\frac{t_w}{2} - \frac{\beta_1 \cdot \varepsilon_u}{2} \right) + A_f \cdot f_{\text{fu}} \cdot \frac{t_w}{2} = \frac{lb \cdot f_t}{ft} \]

The new design flexural strength is:

\[\phi M_{\text{New}} := \phi_{\text{df}} \cdot M_{\text{New}} = \frac{lb \cdot f_t}{ft} \]

\[M_{\text{New}} = \frac{lb \cdot f_t}{ft} \]

Check flexural strength

\[\text{CheckFlexuralStrength} := \begin{cases} \text{if } \phi M_{\text{New}} \geq M_{\text{New}} \\ \text{“OK”} \\
\text{else} \\
\text{“Not Good!”} \end{cases} \]

CheckFlexuralStrength = “OK”

- **Step 3 - Verify failure mode**

\[\text{Verify_FailureMode} := \begin{cases} \text{if } \varepsilon_u \cdot \left(\frac{t_w}{t_w - c_u} \right) \leq \varepsilon_{\text{fr}} \land \text{FailureMode} = \text{“FRP debonding”} \\
\text{“OK”} \\
\text{also if } \left(\frac{t_w - c_u}{c_u} \right) \cdot \varepsilon_{\text{mm}} \leq \varepsilon_{\text{fr}} \land \text{FailureMode} = \text{“Masonry crushing”} \\
\text{“OK”} \\
\text{else} \\
\text{“Not good”} \end{cases} \]

Verify_FailureMode = “OK”

- **Step 4 - Cracking moment not exceeding design flexural strength**

\[M_c := \left(f_c + \frac{Q_u}{S_u} \right) \cdot S_u = \frac{ft \cdot lb}{f_t} \]
\[M_{cr} = \left(f_c + \frac{S_e}{A_s} \right) \cdot S_o = \frac{S_e}{ft} \]

FRP reinforcement

\[\text{Check}_{Mcr} := \begin{cases} \text{if } \phi_{bc} \cdot M_{cr\text{New}} \geq M_{cr} \\ \text{"OK"} \\ \text{else} \\ \text{"Not Good"} \end{cases} \]

\[\text{Check}_{Mcr} = \text{"OK"} \]

- **Step 5 - Maximum force in the FRP reinforcement**

Maximum force in the FRP reinforcement

\[A_f \cdot \varepsilon_f \cdot E_f = \frac{lbf}{in} \]

\[\text{Check}_{MaximumForce} := \begin{cases} \text{if } A_f \cdot \varepsilon_f \cdot E_f < 1500 \cdot \frac{lbf}{in} \\ \text{"OK"} \\ \text{else} \\ \text{"Not Good"} \end{cases} \]

\[\text{Check}_{MaximumForce} = \text{"OK"} \]

- **Step 6 - Out-of-plane shear strength**

The out-of-plane design shear strength is calculated according to ACI 350.

Shear strength reduction factor \(\phi_s := 0.8 \)

\[V_n := \min \left(\frac{3.8 \cdot A_n \cdot \frac{ft}{in^2} \cdot \sqrt{T_m}}{\sqrt{psi}}, \left(\frac{300 \cdot A_n}{in^2 ft} \right), \frac{58 \cdot \frac{lbf}{ft^2} \cdot A_n}{lbf ft} + \left(0.45 \cdot Q_u \right) \right) \frac{lbf}{ft} \]

\[\phi_s \cdot V_n = \frac{lbf}{ft} \]

The factored shear force acting on the wall can be computed as follows:

\[V_u = P_w \cdot \frac{H_w}{2} = \frac{lbf}{ft} \]

\[\text{Check}_{ShearStrength} := \begin{cases} \text{if } \phi_s \cdot V_n > V_u \\ \text{"OK"} \\ \text{else} \\ \text{"Not Good"} \end{cases} \]

\[\text{Check}_{ShearStrength} = \text{"OK"} \]
Check_ShearStrength = “OK”

- Step 7 - Development length

\[l_{dp} = \begin{cases} 0.5 \left(\frac{E_r \cdot n_f \cdot t_f \cdot \text{in}}{2 \cdot f_m} \right) & \text{if } f_m \leq 20 \text{ MPa} \\ \sqrt{\frac{E_r \cdot n_f \cdot t_f \cdot \text{in}}{2 \cdot f_m}} & \text{else} \\ \end{cases} = ? \text{ in} \]

- Step 8 - Serviceability

The serviceability check is required for URM walls resisting sustained lateral loads.

- END OF DOCUMENT -