Page 1 of 10

DESIGN MANUAL FOR FORTRESS CARBON GRID STRAP FRP STRENGTHENING COMPOSITE SYSTEM FOR MASONRY STRUCTURES

ESR No. 3815 ICC-ES AC 125

Document Number: DM-CGS

THIS MANUAL IS PROPERTY OF FORTRESS STABILIZATION SYSTEM. USE ONLY FOR FORTRESS CARBON GRID STRAP FRP COMPOSITE SYSTEM DESIGN. ALL DESIGNS MUST FOLLOW PROCEDURES AS DETAILED IN THE IBC AND UBC, AND AS DESCRIBED HEREIN. THE OWNER AND REGISTERED DESIGN PROFESSIONAL ARE RESPONSIBLE FOR DETERMINING, THROUGH ANALYSIS, THE STRENGTHS AND DEMANDS OF THE STRUCTURAL ELEMENTS TO BE STRENGTHENED BY THE FORTRESS CARBON GRID STRAP FRP SYSTEM, SUBJECT TO THE APPROVAL OF THE CODE OFFICIAL.

Document Control:	
Superseded Manual	December 21, 2017
Reason for Revision	Added epoxy system
Effective Date	November 10, 2022

Document Approval Signature:

I indicate that I have reviewed this Design Manual and agree with the technical contents it presents, and find it meets all applicable requirements and policies. I approve for its release to the customer.

Name:

Signature:

Date: November 2022

TABLE OF CONTENTS

1	INTRODUCTION	4
2	FORTRESS CARBON GRID STRAP	5
3	INSTALLATION of FORTRESS CARBON GRID STRAP	6
4	WALL FLEXURE DESIGN with FORTRESS CARBON GRID STRAP	8
5	DESIGN TOOLS	11
6	SPECIAL INSPECTION REQUIRIMENTS	12
7	REFERENCES	13
А	APPENDIX A	14

1. INTRODUCTION

1.1. PURPOSE

The objective of this design manual is to satisfy the design requirements for the ESR (evaluation service report) No. 3815 in recognition of Acceptance Criteria AC 125 International Code Council Evaluation Service (ICC-ES) Acceptance Criteria for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer Composite Systems (AC 125), Section 7.3; for the use of the Fortress Carbon Grid Strap FRP composite system for strengthening of masonry walls in flexural (out-of-plane) applications.

This document contains the experimental and design, material specifications, design equations, installation instructions, reference to design tools for the licensed professional, and a design example for reference purposes.

1.2. DESIGN MANUAL HOLDER INFORMATION

FORTRESS STABILIZATION SYSTEMS

184 W 64TH STREET HOLLAND, MI 49423 (800) 207-6204 www.fortressstabilization.com

2. FORTRESS CARBON GRID STRAP

2.1. FRP COMPOSITE SYSTEM DESCRIPTION

The **Fortress Carbon Grid Strap** FRP is a high-strength grid composed of three or more customable uni-directional carbon fiber tows precured in tension with an epoxy matrix bonded together with a transverse fiber producing an open grid. It is supplied in varying widths from 0.5 in. (10mm) to 50 in. (1250mm). Fortress Carbon Grid Strap FRP has a storage life of 10 years.

The Fortress Carbon Grid Strap is applied over the substrate continuously in a single layer, and adhered to the substrate and environmentally protected with the **Fortress Xtreme 4000 or Xtreme 4070** adhesive epoxy, two-component ambient cured epoxy resin systems.

The Xtreme 4000 adhesive is packaged in a double-cylinder epoxy cartridge with a static mixing tube available in 300ml x 150ml, 3-gallon (11 L), 15 gallon (57 L) and 135-gallon (511 L) kits. Mixing ratio is 2:1 by volume (100:35 by weight) for components A and B, respectively. Xtreme 4000 has a storage life of two years.

Xtreme 4070 adhesive is packaged in a double-cylinder epoxy cartridge with a static mixing tube available in 300ml x 300ml. Mixing ratio is 1:1 by volume. Xtreme 4070 has a storage life of two years.

2.2. COMPLIANCE WITH THE FOLLOWING CODES

 $\sqrt{2021}$, 2018, 2015, 2012 and 2009 International Building Code® (IBC)

 $\sqrt{2021}$, 2018, 2015, 2012 and 2009 International Residential Code® (IRC)

√ 1997 Uniform Building Code™ (UBC)

2.3. FRP EXPERIMENTAL PROPERTIES

Table 1 reports experimental properties of the Fortress Carbon Grid Strap FRP system using either Fortress 4000 or FSS Xtreme 4070 adhesive epoxy, and are absolute values based on experimental test specimens. These values do not include safety factors; refer to Section 4 of this document for design properties. Safety factors must be applied to experimental values in accordance with design guides and licensed professional engineering value, as applicable.

Page 6 of 10

Table 1 - Fortress Carbon Grid Strap FRP material characteristic properties(Using Fortress Xtreme 4000 or Xtreme 4070 adhesive epoxy)

TEST STANDARD REFERENCE NUMBER	AVERAGE PROPERTY	SYMBOL	EXPERIMEN ⁻	TAL VALUE
	Ultimate Tensile	f _{ffu}	1,960 MPa	284.2 ksi
ASTM D3039 / D7565	Tensile Modulus	E _f	118.2 GPa	17.16 Msi
	Ultimate Strain	ε _{fu}	0.0166 mm/mm	0.0166 in./in.
	Tensile strength per tow	P _u /tow	6.32 kN/tow	1,421 lbs/tow
ASTM D792	Nominal FRP thickness	t _f	0.697 mm ² /mm	0.0274 in. ² /in.
	Nominal single tow area	A _{tow}	3.242 mm ²	0.0050 in. ²
ASTM E1640	Glass Transition Temperature (DMA) Coef. Of Thermal	Tg	60.9 °C	141.6 °F
ASTM E831	Parellel to fiber	α ₀₀	11.1 µm/m/°C	6.2 μin./in./ [.] °F
	Perpendicular to fiber	α ₉₀	38.5 µm/m/°C	21.4 µin./in./ [.] °F

Page 7 of 10

3. INSTALLATION of FORTRESS CARBON GRID STRAP

3.1. INSTALLATION INSTRUCTIONS

Installation of the Fortress Carbon Grid Strap FRP composite system on masonry wall structures must follow the instructions as stated in the most recent version of installation instructions. Fortress Stabilization Systems also provides installation training and demonstrations. Note that no spacing between straps longer than 48 in. (4 ft.) is allowable.

3.2. SUBSTRATE PREPERATION

Where the performance of the FRP composite material depends on bond, such as flexural strengthening of masonry walls, the bond strength of the Fortress Carbon Grid Strap FRP system to a properly prepared surface must equal to or exceed the tensile strength of the masonry substrate. Testing in accordance with ASTM D7234 or ASTM D7522 may be used to estimate the bond strength of bond-critical installations. The test must indicate failure in the host substrate. Sufficient bond area must be used to prevent bond failure.

An improperly prepared surface can result in debonding or delamination of the FRP system before achieving the design load transfer. General guidelines presented here are applicable to the installation of the FRP system. Additionally refer to best practices as specified in the International Concrete Repair Institute (ICRI) guide No. 330.2-2016.

Substrate repair

Problems associated with the condition of the original substrate can compromise the integrity of the FRP system and must be addressed before surface preparation begins. The licensed professional should be consulted to verify the compatibility of materials used for repairing the substrate as necessary.

Surface preparation

Surface preparation requirements shall be specified as needed and might involve, sandblasting, roughening, grinding, or hydrojetting to abrade the surface, as well as grinding excess mortar in the joints in masonry. All paint and other coatings must be removed from the substrate surface. The **Fortress Xtreme 4000 or Xtreme 4070** adhesive epoxy can be used to fill the mortar joints and provide continuity as well as reducing stress concentrations. Particular care should be taken to ensure that the surface is clean from dust and laitance, and to avoid unintentional damage to the substrate by using excessive force.

Installation Kit

All necessary tools are provided in the Fortress Carbon Grid Strap FRP composite system Kit for its installation, including:

- Fortress Carbon Grid Strap
- Mylar overlay
- Fortress Xtreme Epoxy (4000 or 4070)
- Trowels
- \circ Gloves
- Installation Instructions

3.3. ENVIRONMENTAL CONSIDERATIONS

Room temperature at the time of installation shall be 13 °C to 38°C (55 °F to 100 °F), while the surface temperature shall be 13°C to 38°C (55 °F to 100 °F). The Fortress Carbon Grid Strap FRP composite system can be applied over a moist surface condition (without the presence of water droplets) where the license engineer and/or manufacture can determine the appropriate level of moisture presence. Auxiliary heat sources can be used to raise the ambient and room and/or surface temperature during installation as well as reducing moisture as applicable. Heat sources should be clean and not contaminate the surface or the FRP system. *No additional conditions.*

3.4. PRODUCT IDENTIFICATION

All Fortress Carbon Grid Strap FRP composite system products are labeled in accordance with the approved quality control documentation including the manufactures name (Fortress Stabilization Systems) and address, product name, and evaluation report number. Prior to installation, verify that the Fortress Carbon Grid Strap FRP is legitimate.

4. WALL FLEXURE DESIGN with FORTRESS CARBON GRID STRAP

4.1. GENERAL DESIGN CONSIDERATIONS

The design for the strengthening in flexure or out-of-plane of masonry walls using the Fortress Carbon Grid Strap FRP composite system is based on strength design in accordance with Chapter 19 and 21 of the IBC and UBC. The owner and registered design professional are responsible for determining, through analysis, the strengths and demands of the structural elements to be strengthened by the Fortress Carbon Grid Strap FRP system, subject to the approval of the code official.

Structural design provisions for the Fortress Carbon Grid Strap FRP system are based on test results and principles of structural analysis as prescribed in IBC Section 1604.4, in addition to extensive research literature and design guides like ACI 440.2R. The basis of design includes strain compatibility, load equilibrium and limit states. All designs must follow procedures as detailed in the IBC and UBC as applicable (referenced in section 2.2) described in this section. Fortress Carbon Grid Strap FRP system design properties are provided in Table 2 using Fortress Xtreme 4000 or Xtreme 4070 adhesive epoxy.

4.2. FRP DESIGN PROPERTIES

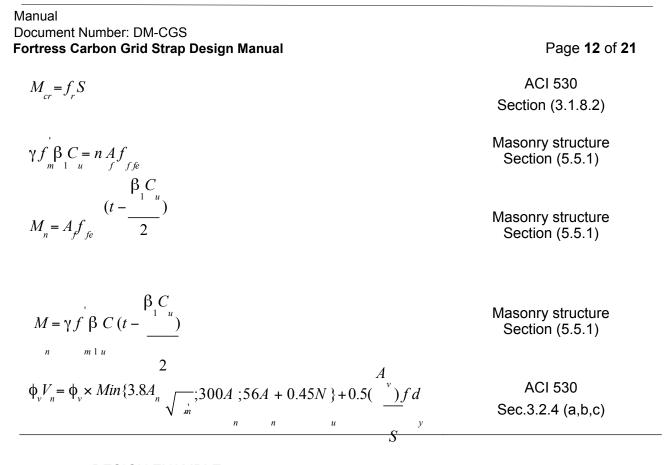
TEST STANDARD REFERENCE NUMBER	AVERAGE PROPERTY	SYMBOL	EXPERIMENT	AL VALUE
	Guaranteed Tensile Strength	f _{ffu}	1,618 MPa	234.7 ksi
	Tensile Modulus	E _f	112.3 GPa	16.30 Msi
ASTM D3039 / D7565	Guaranteed Ultimate Strain	٤ffu	0.0129 mm/mm	0.0129 in./in.
	Guaranteed Tensile strength per tow	P _u /tow	5.22 kN/tow	1,172 lbs/tow
	Nominal FRP thickness	t _f	0.697 mm ² /mm	0.0274 in. ² /in.
ASTM D792	Nominal single tow area	A _{tow}	3.242 mm ²	0.0050 in. ²
	Environmental-	Ce	0.95 – Interior	r exposure
AC 125	Environmental- reduction factor ²		0.85 – Exterior/Aggr	essive exposure
	Creep-Rupture and Fatigue stress limits		0.55 fuj	

Table 2 - Fortress Carbon Grid Strap FRP design properties (using Fortress 4000 or FSS Xtreme 4070 adhesive epoxy)

Experimental value minus three times the standard deviation.

²Exterior/Aggressive exposure includes (bridges, piers, and unenclosed parking garages) and aggressive environment (chemical plants and wastewater treatment plants).

Manual Document Number: DM-CGS Fortress Carbon Grid Strap Design Manual


Page **10** of **10**

4.3. DESIGN NOMENCLATURE

Symbol	Description
A _f	Area of FRP reinforcement per unit length, mm ² /m (in. ² /in.)
An	Section area of masonry block, cm2/m (in.2/ft)
CE	Environmental-reduction factor
E _f	FRP tensile modulus of elasticity, MPa (ksi)
Em	Elastic modulus of masonry block, MPa (ksi)
f _{fe}	Effective FRP tensile stress, MPa (psi)
f _{ffu}	Guaranteed FRP tensile strength, MPa (psi)
f _{fu}	Design tensile strength, MPa (psi)
f _{uj}	Ultimate tensile strength, MPa (psi)
f' _m	Nominal compressive strength of masonry block, MPa (psi)
fr	Nominal tensile strength of masonry block, MPa (psi)
h _{eff}	Height to resultant of lateral forces, mm (in.)
H _w	Height of the wall, mm (in.)
l _{df}	Development length of FRP system, mm (in.)
Lw	Length of the wall, mm (in.)
M _{cr}	Cracking moment, kN-m/m (lbf-ft/ft)
Mn	Nominal flexural strength, kN-m/m (lbf-ft/ft)
n	Number of FRP plies (always =1 for Fortress Carbon Grid Strap)
p _{ffu}	Guaranteed FRP load per unit width, kN/mm (lb/in.)
p fm	Force per unit width (lb/in.)
Qu	Applied factored axial load, kN (kip)
S _f	Spacing of FRP strip, mm (in.)
So	Static moment of area, cm3/m (in.3/ft)
t _f	FRP nominal laminate/grid thickness, mm (in.)
t _{shell}	Thickness of the masonry block shells,mm (in.)
tw	Thickness of the wall / masonry block, mm (in.)
Vn	Out-of-plane shear strength, kN (kip)
Vu	Factored shear force, kN (kip)
W _f	Width of FRP strip, mm (in.)
βı	Ratio of depth of equivalent rectangular stress block to depth of the neutral axis
φ	Strength reduction factor
K _m	Bond-reduction factor
ε _{fe}	Effective FRP tensile strain, mm/mm (in./in.)
ε _{ffu}	Guaranteed FRP ultimate tensile strain, mm/mm (in./in.)
ε _{fu}	Ultimate tensile strain, mm/mm (in./in.)
ε _{mu}	Compressive ultimate strain of masonry block, mm/mm (in./in.)
ε _c	Compression strain in unit base material of the masonry, mm/mm (in./in.)

4.4. DESIGN EQUATIONS

Equation	Reference
ϵ_{fe} = 0.45 ϵ_{fu}	AC125 (3a)
$f_{fe} = E_f \epsilon_{fe}$	AC125 (3b)
$p_{fm} = n t_f f_{fe} \le 1500 \text{ lb/in.}$	AC125 (4)
ffu = CE fffu	ACI 440.2R (9-3)
$\varepsilon_{fu} = C_E \varepsilon_{ffu}$	ACI 440.2R (9-4)
$\Phi Mn \ge Mu$	ACI 440.2R (10-1)

4.5. DESIGN EXAMPLE

Refer to Appendix A, which contains a general design example for the flexural strengthening of unreinforced masonry wall subject to out-of-plane loads with FRP. This design example provides a reference for the registered design professional, whom is responsible for determining, through analysis, the strengths and demands of the structural elements to be strengthened by the Fortress Carbon Grid Strap FRP system, subject to the approval of the code official.

5. DESIGN TOOL

5.1. FORTRESS CARBON GRID STRAP WALL SPACING TABLES

These tables provide the recommended center-to-center spacing of Fortress Carbon grid strap FRP composite system bonded to ungrouted, 8-inch nominal hollow or solid masonry and 8-inch concrete basement walls. The following applies to the tables:

- a) Spacing dimensions are Strap center-to-center.
- b) Walls shall be adequately restrained from out-of-plane movement at both the top and bottom of the wall.
- c) For basement applications, the exterior grade shall be flat or sloping down and away from the wall a distance equal or greater to the Unbalanced Fill Height.
- d) Variations between Unbalanced Fill Heights and Equivalent Fluid Pressures shown may be interpolated linearly.
- e) Walls constructed with concrete masonry units (CMU) shall have a minimum compressive strength of 1,250 psi with Type N mortar or better in good condition.
- f) Cast-in-place concrete walls shall have a minimum compressive strength of 2,500 psi.
- g) Masonry shall be laid in running bond.
- h) Refer to the latest Fortress Installation Guide for other restrictions and use

Page 14 of 21

6. SPECIAL INSPECTION REQUIRIMENTS

6.1. INSPECTION BACKGROUND

FRP composite systems and all associated work should be inspected as required by the applicable local codes. In the absence of such requirements, inspection should be conducted by or under the supervision of a licensed professional or qualified inspector. Inspectors should be knowledgeable of and trained in the installation of FRP systems. The qualified inspector should require compliance with design drawings and project specifications. During installation of the FRP system, the scope of the inspection should include, but is not limited to:

- a) Date and time of installation
- b) Ambient temperature, relative humidity, and general weather observations
- c) Surface temperature of substrate
- d) Surface preparation methods and resulting profile
- e) Qualitative description of surface cleanliness
- f) Type of auxiliary heat source, if applicable
- g) Reinforcement batch number(s) and approximate location in structure
- h) Batch numbers, mixture ratios, mixing times, and qualitative descriptions of the appearance of all mixed matrix and additional materials such as primers, putties, and coatings mixed for the day
- i) Conformance with installation procedures
- j) Substrate tensile pull-off test results completed or supervised by an licensed professional or owner's independent testing agency, if required
- k) FRP properties from tests of field sample panels or witness panels, if required
- I) Location and size of any defects
- m) General progress of work

The inspector should provide the license professional or owner's representative with inspection records and witness panels when required. The installation contractor should retain sample mortar cubes or cylinders and maintain a record of the placement of each batch as applicable.

6.2. INSPECTION REQUIRIMENTS AND ACCEPTANCE

Special inspection must comply with the applicable requirements in Sections 1704 through 1709 of the IBC or Section 1701 of the UBC. Special inspection during the installation of the FRP system must be in accordance with the ICC-ES Acceptance Criteria for Inspection and Verification of Concrete and Unreinforced Masonry Strengthening Using Fiber-reinforced Polymer (FRP) Composite Systems (AC178).

7. **REFERENCES**

AC434, February 2013, "Acceptance Criteria for Masonry and Concrete Strengthening Using Fiber-Reinforced Cementitious Matrix (FRCM) Composite Systems" ICC-ES. (2013)

ACI 440.2R, Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute (2010)

ACI 440.7R, Guide for Design & Construction of Externally Bonded FRP Systems for Strengthening Unreinforced Masonry Structures. American Concrete Institute (2017)

ACI 530, Building Code Requirements and specification for Masonry Structures, TMS 402- 11/ ACI 530-11/ASCE 5-11), Reported by the Masonry Standards Joint Committee (2011).

ASTM D3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials (2014)

ASTM D7234, Standard Test Method for Pull-Off Adhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers. ASTM International (2012)

ASTM D7522, Standard Test Method for Pull-Off Strength for FRP Laminate Systems Bonded to Concrete Substrate. ASTM International (2015)

ASTM D7565, Standard Test Method for Determining Tensile Properties of Fiber Reinforced Polymer Matrix Composites Used for Strengthening of Civil Structures (2017)

ASTM D792, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement (2013)

IBC, International building code International Code. International Code Council (2015, 2012, 2009 and 2006)

ICC-ES AC125, Acceptance Criteria for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer Composite Systems.

International Code Council Evaluation Service (ICC-ES) (2015)

ICRC, Guide specifications for externally bonded FRP fabric systems for strengthening concrete structures, No., 330.2-2016 International Concrete Repair Institute (2016)

IRC, International Residential Code, International Code Council (2015, 2012, 2009 and 2006)

Li, T., Galati, N., Tumialan, J., Nanni, A. Analysis of Unreinforced Masonry Concrete Walls Strengthen

Tan, Kiang Hwee, and M. K. H. Patoary. "Strengthening of masonry walls against out-of-plane loads using fiber-reinforced polymer reinforcement." Journal of Composites for Construction 8.1 (2004)

Triantafillou, Thanasis C. Strengthening of masonry structures using epoxy-bonded FRP laminates. Journal of composites for construction 2.2 (1998)

Tumialan G., J.J. Myers, and A. Nanni. Field Evaluation of Unreinforced Masonry Walls Strengthened with FRP Composites Subjected to Out of Plane Loading. ASCE Structures Congress (2000)

UBC, Uniform Building Code, Internarial Conference of Building Officials (1997)

Manual Document Number: DM-CGS Fortress Carbon Grid Strap Design Manual

Page 16 of 21

APPENDIX A

Design example for the flexural strengthening of unreinforced masonry wall subject to out-ofplane loads with FRP:

· Geometrical properties

Height of the wall	$H_w := 18 \cdot ft$	
Thickness of the wall	$t_w := 11.63 \cdot in$	
Length of the wall	$L_w := 17.67 \bullet ft$	
Thickness of the block shells	$t_{shell} := 1 \cdot in$	

If clay bricks or fully grouted concrete blocks are used, then use 0.5 tw.

Height to resultant of lateral forces	$h_{eff} := 16 \cdot ft$
Section area	$A_n := 36 \cdot \frac{in^2}{ft}$

Static moment of area	$S_o := 160 \cdot \frac{in^3}{a}$
	ft

• Mechanical properties of masonry

Nominal compressive strength	$f_m := 1500 \cdot psi$
Compressive ultimate strain	$\varepsilon_{mu} := 0.0025$
Masonry elastic modulus	$E_m := 550 \cdot f'_m$
Nominal tensile strength	$f_r := 20 \cdot psi$

· Flexural strength without FRP

Existing nominal flexural strength	$M_n := 270 \cdot \frac{lbf \cdot ft}{ft}$
Phi-factor	$\phi_m := 0.6$
Existing design flexural strength	$\phi M_n := 160 \cdot \frac{lbf \cdot ft}{ft}$

Page 17 of 21

· Anticipated conditions

New distributed factored lateral load	$p_{uNew} \coloneqq 20 \cdot psf$
Applied factored axial load	$Q_u := 576 \cdot \frac{lbf}{ft}$
New maximum ultimate bending moment	$M_{uNew} := 620 \cdot \frac{lbf \cdot ft}{ft}$
Thickness	$t_f := 0.014 \cdot in$
Tensile modulus of elasticity	$E_f := 10500 \cdot ksi$
Ultimate tensile strength	$f_{ffu} := 220 \cdot ksi$
Ultimate tensile strain	$\varepsilon_{ffu} := 0.021$
Environmental-reduction factor	<i>C_E</i> = 0.65
Bond-reduction factor	$\kappa_m := 0.45$
Strength-reduction factor	$\phi_{mf} := 0.6$
Number of FRP plies	$n_f := 1$
Width of FRP strip	$w_f := 4 \cdot in$
Spacing of FRP strip	$s_f := 36 \cdot in$
Check_Spacing := $\ \mathbf{i} \mathbf{f} s_f < 3 \cdot t_w + w_f \ _{w \to w}$	

else

"Not Good"

Manual Document Number: DM-CGS Fortress Carbon Grid Strap Design Manual

Page 18 of 21

Area of FRP reinforcement per unit length

$$A_f := n_f \cdot t_f \cdot \frac{w_f}{s_f} = ? \frac{in^2}{ft}$$

 $\varepsilon_{fu} := C_E \cdot \varepsilon_{ffu} = 0.01365$

• Step 1 - Calculate the FRP design tensile strain and strength

Design tensile strain

 $f_{fu} := C_E \cdot f_{ffu} = ? ksi$

Design tensile strength

· Step 2 - Calculate the new design flexural strength

Assume failure mode

FailureMode := "FRP debonding"

Select FailureMode equal to "FRP debonding" or "Masonry crushing"

The effective tensile strain and stress in the FRCM reinforcement for flexurecontrolledfailure can be calculated.

Effective FRP tensile strain

 $\varepsilon_{fe} := min\left(\kappa_m \cdot \varepsilon_{ffu}, \varepsilon_{fu}\right) = 0.00945$

Effective FRP tensile stress

 $f_{fe} := min\left(\kappa_m \cdot f_{ffu}, f_{fu}\right) = ? ksi$

The following stress block factors can be assumed:

$$\begin{aligned} \gamma &\coloneqq & \left\| \begin{array}{c} \text{if } FailureMode = ``FRP \text{ debonding''} \\ & \left\| \begin{array}{c} 0.7 \\ \text{if } FailureMode = ``Masonry \text{ crushing''} \\ & \left\| \begin{array}{c} 0.8 \end{array} \right| \end{aligned} \right\| \\ \beta_I &\coloneqq & \left\| \begin{array}{c} \text{if } FailureMode = ``FRP \text{ debonding''} \\ & \left\| \begin{array}{c} 0.7 \\ \text{if } FailureMode = ``Masonry \text{ crushing''} \\ & \left\| \begin{array}{c} 0.8 \end{array} \right| \end{aligned} \right\| \\ 0.8 \end{aligned}$$

Compatibility:

$$\varepsilon_{f}(x) := \left\| \begin{array}{c} \text{if } FailureMode = \text{``FRP debonding''} \\ \parallel \varepsilon_{fe} \\ \text{if } FailureMode = \text{``Masonry crushing''} \\ \parallel \left(\left(\frac{t_{w} - x}{w} \right) \cdot \varepsilon_{mu} \right) \end{array} \right\|$$

Manual Document Number: DM-CGS Fortress Carbon Grid Strap Design Manual

Page 19 of 21

Equation of equilibrium:

$$f(x) := Q_u + A_f \cdot E_f \cdot \varepsilon_f(x) - \gamma \cdot f_m \cdot \beta_1 \cdot x$$
$$c_u := \operatorname{root} \left(f(x), x, 0, t_w \right)$$

The neutral axis depth is:

$$c_u = ?$$
 in

The new nominal flexural strength is:

$$M_{nNew} := \gamma \cdot f'_m \cdot \beta_1 \cdot c_u \cdot \left(\frac{t_w}{2} - \beta_1 \cdot \frac{c_u}{2}\right) + A_f \cdot f_{fe} \cdot \frac{t_w}{2} = ? \frac{lbf \cdot ft}{ft}$$

The new design flexural strength is:

$$\phi M_{nNew} := \phi_{mf} \cdot M_{nNew} = ? \ \frac{lbf \cdot ft}{ft}$$

$$M_{uNew} = ? \frac{lbf \cdot ft}{ft}$$

Check flexural strength

$$CheckFlexuralStrength := \begin{vmatrix} \text{if } \phi M_{nNew} \ge M_{uNew} \\ & \| \text{``OK''} \\ else \\ & \| \text{``Not Good!''} \end{vmatrix}$$

CheckFlexuralStrength = "OK"

...

• Step 3 - Verify failure mode

$$\begin{aligned} & \textit{Verify}_\textit{FailureMode} \coloneqq & \textit{if } \varepsilon_{fe} \cdot \left(\frac{c_u}{t_w - c_u}\right) \leq \varepsilon_{mu} \wedge \textit{FailureMode} = ``FRP debonding'' \\ & \parallel ``OK'' \\ & \textit{also if } \left(\frac{t_w - c_u}{c_u}\right) \cdot \varepsilon_{mu} \leq \varepsilon_{fe} \wedge \textit{FailureMode} = ``Masonry crushing'' \\ & \parallel ``OK'' \\ & \textit{else} \\ & \parallel ``Not \textit{good''} \end{aligned}$$

Verify_FailureMode = "OK"

Step 4 - Cracking moment not exceeding design flexural strength

$$Check_Mcr:= \left| \begin{array}{c} \text{if } \phi_{mf} \cdot M_{nNew} \ge M_{cr} \\ \| \text{``OK''} \\ \text{else} \\ \| \text{``Not Good''} \end{array} \right|$$

 $M_{cr} = (f_r + (Q_u/A_n)) \times S_o = ? ft^* lbf/ft$

Check_Mcr="OK"

• Step 5 - Maximum force in the FRP reinforcement

Maximum force in

$$Check_MaximumForce := \left\| \begin{array}{c} \text{if } A_{f} \cdot \varepsilon_{fe} \cdot E_{f} < 1500 \cdot \frac{lbf}{in} \\ \| \text{``OK''} \\ \text{else} \\ \| \text{``Not Good''} \end{array} \right\|$$

Check_MaximumForce = "OK"

Step 6 - Out-of-plane shear strength

The out-of-plane design shear strength is calculated according to ACI 530.

Shear strength reduction factor $\phi_v := 0.8$

$$V_{n} := \min\left(\frac{\left(3.8 \cdot A_{n} \cdot \frac{ft}{in^{2}} \cdot \sqrt{f_{m}}\right)}{\sqrt{psi}}, \frac{(300 \cdot A_{n})}{\frac{in^{2}}{ft}}, \frac{\left(56 \cdot \frac{lbf}{ft^{2}} \cdot A_{n}\right)}{\frac{lbf}{ft}} + \frac{(0.45 \cdot Q_{u})}{\frac{lbf}{ft}}\right) \cdot \frac{lbf}{ft}$$

$$\phi_{v} \cdot V_{n} = ? \frac{lbf}{ft}$$

 $A_f \cdot \varepsilon_{fe} \cdot E_f = ? \frac{lbf}{in}$

The factored shear force acting on the wall can be computed as follows:

$$V_{u} := p_{uNew} \cdot \frac{H_{w}}{2} = ? \frac{lbf}{ft}$$

$$Check_ShearStrength := \left\| \begin{array}{c} \text{if } \phi_{v} \cdot V_{n} > V_{u} \\ \| \text{``OK''} \\ \text{else} \\ \| \text{``Not Good''} \end{array} \right\|$$

Check ShearStrength = "OK"

· Step 7 - Development length

$$\begin{split} l_{df} &:= \left\| \begin{array}{c} \text{if } f_m \leq 20 \cdot MPa \\ \left\| \sqrt{\frac{E_f \cdot n_f \cdot t_f \cdot in}{2 \cdot f_m}} \\ \text{else} \\ \left\| \left(0.057 \cdot \sqrt{\frac{n_f \cdot E_f \cdot t_f \cdot in}{\sqrt{f_m \cdot psi}}} \right) \right\| \end{split} = ? in \end{split} \end{split}$$

Step 8 - Serviceability

The serviceability check is required for URM walls resisting sustained lateral loads.

- END OF DOCUMENT -